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Abstract

The mathematical formulation for determining the dynamic instability due to transverse doublet modes in the self-

excited vibration of a thin annular plate is presented in this paper. An analytical approach is developed to obtain the

stability results from the eigenvalue problem of a stationary disc with a finite contact area. The approach uses the

eigenfunctions of transverse doublet modes in classical plate theory and establishes the formulation of modal instability

due to the modal-interaction of a doublet mode pair. The one-doublet mode model of a disc and a discrete model

equivalent to the one-doublet mode model are proposed for providing a more fundamental understanding of the onset of

squeal. The analytical models are validated through a comparison of results from a modal expansion model obtained from

finite element component models. Throughout the analytical investigation, the pad arc length is found to be a critical

design parameter in controlling squeal propensity.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Friction is the source of squeal noise in a brake system. Friction force on contact interface produces non-
conservative work that can eventually lead to unstable oscillations. An effective model for friction-induced
vibration is constructed from the system equations of motion using a linearized friction and contact stiffness
model. The dynamic instability near a steady sliding equilibrium position can be determined from the
appearance of the positive real parts of eigenvalues of the linearized model as extensively reviewed in the
review article [1].

In mathematical interpretation, the non-conservative frictional work produces a non-symmetric stiffness
matrix in the linearized equations of motion that is necessary for the appearance of eigenvalues with positive
real parts. The non-symmetric elements in the stiffness matrix of brake system model can arise from the non-
conservative nature of follower forces and friction-couples. Mottershead and Chan [2] used frictional follower
loads to study the flutter instability of doublet modes of a finite element non-rotating disc model. Also,
Mottershead [3] extensively introduced several follower force friction models in his review article. However,
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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the influence of follower forces on squeal propensity has been seen to be marginal. Flint and Hulten [4]
developed a stationary disc brake model with follower force and friction-couple components and concluded
that the relative effect of follower forces was negligible. Heilig and Wauer [5] developed a simplified rotating
disc brake model with two different contact models, global contact and local gradient contact models, where
the local gradient contact model describes the direction change of the contact forces corresponding to the disc
deformation. Therefore, the contact forces of the local gradient contact model are follower forces. From their
numerical results, they also concluded ‘‘the differences in the results between the global and local gradient
contact modeling are marginal (o0.1%) and not visible in the plots’’. Ouyang and Mottershead [6] have
shown that the follower force term is many times smaller than the friction-couple term in disc brake system.

In contrast, the friction-couple mechanism is considered to be a significant brake squeal leading factor in
producing vibrations. Since the friction-couple mechanism is derived from the undeformed contact kinematics
(or global contact model), the global contact model is sufficient in describing the contact mechanics of the
brake system. Ouyang and his coworkers [7] provided an extensive review on the automotive disc brake squeal
analysis described by the friction-couple mechanism in a linearized set of equations of motion.

One of the primary sources of nonlinearities in brake system models is the nonlinear load-deflection
behavior of the friction material. A small change of preload can lead to a significant change in the linearized
contact stiffness. Vanderlugt [8] in his experimental work showed that the vibration modes leading to squeal
can be modified as contact stiffness changes with respect to brake pressure variation. This implies that the
stability of each mode depends on contact stiffness variation. In order to investigate the modal stability
behavior and its stability boundary from the linearized equations of motion, Chowdhary et al. [9] treated
contact stiffness as a system parameter and solved the eigenvalue sensitivity problem of disc brake system on
the dynamic instability of the steady-sliding response. Their contribution to brake squeal research has been to
show the role of mode-coupling and mode-merging on the stability boundaries in the stiffness-friction plane.
Later, Huang et al. [10] presented the qualitative relations between mode-coupling and mode-merging and
showed that the compatibility of mode shapes needed for mode coupling is one of the factors dictating the
onset of squeal in drum brake system. However, numerical results from their analysis did not establish the
generalized squeal theory associated with modal interaction.

In the present study, a simplified mathematical disc model is constructed on the basis of the physical disc
brake system that was studied experimentally and numerically by Vanderlugt [8]. Since the unstable modes on
squeal frequencies were found to be disc doublet modes in his work, the one-doublet mode model of a thin
annular plate representing a brake rotor is developed and investigated. For the practical purpose, the system
parameters and the component disc natural frequencies are obtained from the measured data and the finite
element (FE) analysis in Vanderlugt’s work [8]. The modal results obtained from the finite element method
showed the non-coincidence of the two natural frequencies in a doublet mode. The frequency separation of the
component disc mode pair will be the focus of this study and the corresponding modal stability boundary will
be solved with respect to contact stiffness variation.

The main objective of the work presented in this paper is to analytically describe the modal instability of
disc brake system. This work provides the formulation for the squeal onset of brake geometry that has not
been addressed in any previous papers. The essence of the formulation is to provide the fundamental design
concept of reducing squeal occurrence in disc brake system. Also, this work provides the physical
interpretation for the formulation of squeal onset. For better physical interpretation, a discrete model
representing the modification of Hoffmann’s model [11] is introduced, where this simplified model is shown to
be mathematically equivalent to the doublet mode model.

2. Model development

2.1. Equations of motion

The dynamic instability due to circumferential friction between a stationary thin annular plate and two fixed
annular sector contact interfaces under steady-sliding conditions are investigated. Rotational effects are not
considered by assuming that the rotation speed is near the critical speed (in the mid range) [12] where the
gyroscopic destabilizing effect and the radial dissipative effect cancel out. The effect of frictional follower force
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is neglected on the basis that contact stiffness term is much larger than pre-stress term in the stiffness matrix
[4–6]. Here, the annular plate is subject to clamped boundary condition at inner radius and free boundary
condition at outer radius. The corresponding equation of motion for the transverse motion, wð~x; tÞ of the
annular plate can be written as

rh
q2wð~x; tÞ

qt2
þDr4wð~x; tÞ ¼ 0, (1)

where

r4 ¼
q2

qr2
þ

q
rqr
þ

q2

r2qy2

� �2

; D ¼
Eh3

12ð1� n2Þ
, (2)

and E, r and n are the Young modulus, the mass density and the Poisson ratio, respectively, of the disc
material. The transverse displacement can be written in the following truncated modal expansion:

wð~x; tÞ ffi
XN=2
n¼1

RnðrÞfcos ðnyÞq2n�1ðtÞ þ sin ðnyÞq2nðtÞg

�
XN

j¼1

fz;jðr; yÞqjðtÞ, (3)

where RnðrÞ ¼ AnJnðbrÞ þ EnY nðbrÞ þ BnInðbrÞ þ F nKnðbrÞ. Jn and Yn are the ordinary Bessel functions of the
first and second kind, and In and Kn are the modified Bessel functions of the first and second kind. n is the
number of nodal diameters on a vibrating annular plate and is referred to as the mode number.

To satisfy the clamped-free boundary condition, the displacement and the slope of displacement must be
zero at inner radius and the moment and shear force must be zero at outer radius [13]. The algebraic equations
resulting from enforcing the four boundary conditions are:

JnðbaÞ Y nðbaÞ

ðpnJn � Jnþ1ÞðbaÞ ðpnY n � Y nþ1ÞðbaÞ

fðtn � 1ÞJn þ snJnþ1gðbbÞ fðtn � 1ÞY n þ snY nþ1gðbbÞ

fpnðtn þ 1ÞJn � ðnpnsn þ 1ÞJnþ1gðbbÞ fpnðtn þ 1ÞY n � ðnpnsn þ 1ÞY nþ1gðbbÞ

2
666664

InðbaÞ KnðbaÞ

ðpnIn þ Inþ1ÞðbaÞ ðpnKn � Knþ1ÞðbaÞ

fðtn þ 1ÞIn � snInþ1gðbbÞ fðtn þ 1ÞKn þ snKnþ1gðbbÞ

fpnðtn � 1ÞIn þ ðnpnsn � 1ÞInþ1gðbbÞ fpnðtn � 1ÞKn � ðnpnsn � 1ÞKnþ1gðbbÞ

3
777775

An

En

Bn

F n

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

0

0

0

0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
, (4)

where

pnðbrÞ ¼ n=br, (5)

snðbrÞ ¼ ð1� nÞ=br, (6)

tnðbrÞ ¼ nðn� 1Þð1� nÞ=ðbrÞ2. (7)

The values of b corresponding to the zero determinant of the matrix in Eq. (4) are sought for the nth nodal
diameter mode and are denoted as bn. The coefficient vectors, {An, En, Bn, Fn}

T corresponding to bn are
obtained and assigned to the radial component of the eigenfunction, Rn(r).

For disc brake systems with double-sided pistons, brake pressure is applied symmetrically on both sides of
the disc. In a single-piston floating-caliper system, the caliper slides from side-to-side as brake pressure is
applied. Here, the preloads exerted on the back-plates of two pads by brake pressure are assumed to be
identical under steady braking condition as shown in Fig. 1. The pre-stress is assumed to be uniformly
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Fig. 2. Description of contact stresses on a specific location of contact area, ACS.
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Fig. 1. Description of a stationary thin annular plate with annular sector friction interface; No is the preload acting on the top pad and the

bottom pad, symmetrically.
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distributed over the contact area such as po ¼ No=ACS where No is the preload and ACS is the contact area.
Also, friction coefficient is assumed to be uniformly constant over the contact area of the disc. The vertical
contact and friction stresses on the top and bottom contact node in Fig. 2 will be obtained from the static plus
vibrating fluctuation stresses, respectively, such that

ptopðr; y; tÞ ¼ po � kcwðr; y; tÞ, (8)

pbottomðr; y; tÞ ¼ po � kcwðr; y; tÞ, (9)
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f topðr; y; tÞ ¼ mptop, (10)

f bottomðr; y; tÞ ¼ mpbottom. (11)

Therefore, the virtual work done by contact forces over the contact area is expressed in the following form:

dW cs ¼

Z
cs

½�ðpo þ kcwÞdw� f topduy�rdrdy

þ

Z
cs

½ðpo � kcwÞdw� f bottomð�duyÞ�rdrdy, (12)

where
R
cs �

R yc=2
�yc=2

R ro

ri
and uy ¼ �h=2ðqw=rqyÞ.

The equations of motion of the disc brake system are derived from the assumed modes approach using the
displacement modal expansion of Eq. (3) and

d

dt

qT

q _qi

� �
þ

qU

qqi

¼
XN

j¼1

QijðqjÞ, (13)

where

T ¼
rh

2

Z 2p

0

Z b

a

qwðr; y; tÞ
qt

� �2
rdrdy; (14)

dW cs �
XN

i¼1

XN

j¼1

QijðqjÞdqi: (15)

Here the virtual work due to friction over the contact shown in Fig. 2 produces the generalized forces Qij in
Eq. (13). The kinetic energy, T is decomposed into each coordinate by substituting Eq. (3) into T with mass
normalization, rhp

R b

a
R2

i rdr � 1. Consequently, qU/qqi becomes the square of a circular natural frequency of
the stationary disc, oi

2, which is obtained from Eq. (4). Therefore, the linearized equation of Eq. (13) is
obtained in the following (N�N) matrix form:

f €qg þ ð½o2� þ ½A�Þfqg þ ½B�fqg ¼ 0, (16)

where ½o2� ¼ diagðo2
nÞ is the natural frequency matrix of the component disc, [A] ¼ [A]T is the contact stiffness

matrix. [B] 6¼[B]T is the non-symmetric non-conservative work matrix produced by friction-moment.

2.2. Reduced-order model: one-doublet modes approximation

The focus of this work will be on using a single doublet mode pair model for the prediction of squeal. Here,
the nth doublet mode pair to be used is

fz;1 ¼ RnðrÞ cos ðnyÞ, (17)

fz;2 ¼ RnðrÞ sin ðnyÞ. (18)

From Eq. (16), the linearized equations of motion for the one-doublet mode takes on the following
matrix form:

€qþ½o2� qþ½A� qþ½B� q ¼ 0, (19)

where

q ¼ fq2n�1; q2ng
T, (20)

½o2� ¼
o2

2n�1 0

0 o2
2n

" #
, (21)
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½A� ¼ kc
~R

z

n

Z yc=2

�yc=2

cos2ny 0

0 sin2ny

" #
dy, (22)

½B� ¼ mkcn ~R
y
n

Z yc=2

�yc=2

0 �sin2ny

cos2ny 0

" #
dy, (23)

~R
z

n ¼ 2

Z ro

ri

fR2
nðrÞrgdr, (24)

~R
y
n ¼ �2

Z ro

ri

h

2
R2

nðrÞ

� �
dr. (25)

Using fqðtÞg ¼ fVg elt, the characteristic equation for the system becomes

det ð½H þ l2ðIÞ�Þ ¼ 0, (26)

where ½H� � ½o2� þ ½A� þ ½B� and l is eigenvalues determining the dynamic instability of the brake system. The
appearance of positive real parts of l indicates an unstable steady sliding equilibrium. Solving for the
eigenvalues from Eq. (26) shows that positive real parts and non-zero imaginary parts occur when

m4mcr ¼
O2

2n�1 � O2
2n

�� ��
kc

~R
y
n

��� ��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnycÞ

2
� sin2ðnycÞ

q , (27)

where O2n�1 and O2n are the stiffness-coupled circular natural frequencies obtained from Eqs. (21) and (22)
such that

O2
2n�1 ¼ o2

2n�1 þ kc
~R

z

n

Z yc=2

�yc=2
ðcos2nyÞdy, (28)

O2
2n ¼ o2

2n þ kc
~R

z

n

Z yc=2

�yc=2
ðsin2nyÞdy. (29)

The works of [9,10] provide some insight on the relationship of the critical friction coefficient to the
frequency separation (O2

2n�1 � O2
2n). In these works, the modal stability boundary associated with two veering

modes from overall system stability boundary was identified and it was concluded that mode-veering of two
adjacent modes was directly related to squeal propensity. Here, their qualitative observations can be explained
by the analytical formulation of Eq. (27) such that the closeness of frequencies of a doublet mode pair is
expected to increase squeal propensity.

The frequency separation on mode-veering is the difference between the two stiffness-coupled natural
frequencies (m ¼ 0) such that

O2
2n�1 � O2

2n ¼ ðo
2
2n�1 � o2

2nÞ þ
kc
~R

z

n

n
sin ðnycÞ, (30)

From a design perspective, the contact span angle yc is the only controllable system parameter in Eq. (30).
Therefore, the specific values of yc minimizing O2

2n�1 � O2
2n (or, equivalently minimizing mcr) is crucial in the

design of disc brake system. Those contact span angles will be referred to as the critical contact span angle yc
cr.

The critical contact span angle can be found from Eq. (30) such that

sin ðnycrc Þ ¼
n

~R
z

n

ðo2
2n � o2

2n�1Þ

kc

. (31)

For a perfectly axi-symmetric circular plate, we have o2
2n�1 ¼ o2

2n, and therefore, contact span angles
leading to sin ðnycrc Þ ¼ 0 produce mcr ¼ 0. Therefore, sin ðnycÞ ¼ 0 is the condition for the critical contact span
angles of a perfectly axi-symmetric disc. For a physical disc, however, non-zero component frequency
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separation (o2n�1ao2n) in a doublet mode pair is likely to exist. In general, ðo2
2n � o2

2n�1Þ=kc is small due to
nearly axi-symmetry and relatively large value of contact stiffness kc. Critical contact span angles for a nearly
axi-symmetric disc are found from Eq. (31); however sin ðnycÞ ¼ 0 can be used as a reasonable approximation.

2.3. Disc doublet discrete model

For a better understanding of mode-veering and modal instability, a simplified discrete model is introduced
here. A two-degree-of-freedom spring-mass model shown in Fig. 3a has been proposed [11] to demonstrate the
mode-coupling type instability. The spring-mass model includes two system springs (k1, k2) and one contact
spring (ko) between a single mass and a single traveling surface. The oscillation of the system produces normal
force variation and friction force variation on single point contact and it can lead to self-excited vibration. For
the purpose of the mathematical equivalency to the one-doublet mode model as described in the following
discussion, this model will be modified.

The off-diagonal elements in the contact stiffness matrix [A] of Eq. (22) for the one-doublet mode model
are seen to be zero. This implies that two modes do not have contact stiffness-coupling. To make the
discrete model mathematically equivalent to the one-doublet mode model, two contact springs should
exist in orthogonal directions since the orthogonal arrangement of two contact springs produces the diagonal
contact stiffness-coupling matrix in the discrete model. The discrete model shown in Fig. 3b is the result
of this contact spring re-arrangement. The equations of motion of the system in Fig. 3b can be shown to be of
the form:

€qþ½ô2
� qþ½Â� qþZ½B̂y� q ¼ 0, (32)

where

½ô2
� ¼

k1 0

0 k2

" #
, (33)

½Â� ¼
kx 0

0 ky

" #
, (34)

½B̂y� ¼
0 �ky

kx 0

" #
(35)
k1

k1

�2

�1

k0

k2

kx

ky

k2

x

y
x

y

Fig. 3. Single-mass discrete models: (a) three spring model [11] with one contact spring and two system springs, (b) newly proposed four

spring model with two orthogonal contact springs and two orthogonal system springs.
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and, where Z is the friction factor with k1, k2, kx and ky being mass-normalized stiffness. In order to make two
equations (19) and (32) equivalent, the system parameters of the discrete model are defined as the following:

k1 ¼ o2
2n�1; k2 ¼ o2

2n, (36)

kx ¼
kcyc

~R
z

n

2
1þ

sin ðnycÞ

nyc

� �
, (37)

ky ¼
kcyc

~R
z

n

2
1�

sin ðnycÞ

nyc

� �
, (38)

Z ¼ mn
~R
y
n

~R
z

n

. (39)

Here, the mathematically equivalent single-mass model with Eqs. (32)–(39) will be referred to as the disc
doublet discrete model. It should be noted that the contact strain energies from orthogonal contact stiffness,
kx and ky are equivalent to the modal contact strain energies from the disc cosine and sine modes, respectively.
Also, the two system springs, k1 and k2 represent the component modal stiffness of the doublet mode pair.
Even though the model-equivalency has been made in the absence of follower force terms, it retains accuracy
in the actual disc brake system, as explained earlier. This disc doublet discrete model is relevant because it is
the simplest two-degree-of-freedom model possibly representing a brake squeal model with physical geometry.

From the eigensolutions of Eq. (32), the equivalent critical friction factor can be written as

Zcr ¼
ðo2

2n�1 � o2
2nÞ þ ðkx � kyÞ

�� ��
2
ffiffiffiffiffiffiffiffiffiffi
kxky

p . (40)

The dynamic instability of this discrete system is exactly expressed by a component frequency separation
and a contact stiffness separation in Eq. (40). It is clear that the smaller separation of component natural
frequencies and the contact stiffness between two modes increases modal instability. Here, the contact stiffness
separation, Dk ¼ |kx�ky| in the discrete system can be found from the contact span angle of the actual disc in
Eqs. (37) and (38). Again, the contact stiffness separation in the disc doublet discrete model equivalently
represents the difference between the modal contact strain energies of a doublet mode pair. Therefore, the
minimal stiffness-coupled frequency separation addressed in the previous section can be understood in the way
that if two modes in a doublet pair have the identical modal contact strain energy, the propensity of the modal
instability due to the doublet mode reaches to the maximum level.

2.4. Finite element modal model

In this analysis, N vibration modes are found from the finite element model of a physical brake rotor and
two pads are assumed to be fixed as illustrated in Fig. 4. The transverse and circumferential displacements of
the rotor are written in the following truncated modal expansion using the finite element model:

wð~x; tÞ ffi
XN

j¼1

fz
j ð~xÞqjðtÞ; vð~x; tÞ ffi

XN

j¼1

fy
j ð~xÞqjðtÞ. (41)

Following the analytical procedure, the contact forces are defined at every node on the contact surface of
the rotor such that

F top

N top

Fbottom

Nbottom

8>>><
>>>:

9>>>=
>>>;
¼

mðpo þ kcwtopÞ

po þ kcwtop

mðpo � kcwbottomÞ

po � kcwbottom

8>>>><
>>>>:

9>>>>=
>>>>;
, (42)
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where

fqg ¼ fq1; q2; . . . ; qNg
T, (43)

wtopð~xtopÞ ffi
XN

j¼1

fz
j ð~xtopÞqjðtÞ, (44)

wbottomð~xbottomÞ ffi
XN

j¼1

fz
j ð~xbottomÞqjðtÞ. (45)

As previously noted, follower forces are not included in Eq. (42) as the contact forces are defined in the
undeformed surface of the disc. By substituting Eqs. (42)–(45) into Eq. (13), the modal equations of motion
for a N degree-of-freedom model take the form of

€qþ½ ~o2� qþkc½ ~A� qþmkc½ ~By� q ¼ 0, (46)

where

~Anm ¼

Z
CS

ffz
nð~xtopÞf

z
mð~xtopÞ þ fz

nð~xbottomÞf
z
mð~xbottomÞgdA, (47)

~B
y
nm ¼

Z
CS

f�fy
nð~xtopÞf

z
mð~xtopÞ þ fy

nð~xbottomÞf
z
mð~xbottomÞgdA. (48)

ffz
nð~xtopÞgn¼1;2;...;N , ff

z
nð~xbottomÞgn¼1;2;...;N , ff

y
nð~xtopÞgn¼1;2;...;N , ff

y
nð~xbottomÞgn¼1;2;...;N are the nth (1�M) modal

vectors in the transverse and circumferential directions, respectively, which contain modal information on
every node of the top and bottom contact surface (M is the number of elements by the discretization of contact
surface) and fo1;o2; . . . ;oNg are the circular frequencies of the disc. The original modal vectors of all nodes in
the finite element disc model are obtained by a modal analysis with ANSYS software. In this finite element
model, the 56 vibration modes of the disc are retained. The contact surface between the disc and the brake pad
lining is discretized into nearly 8000 elements and the area integration over contact surface is conducted by
numerical calculation such as

R
CS

dAffi
PM

i¼1DAcs, as detailed in Ref. [10].
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3. Numerical results

For a preliminary consideration, the results obtained from modal analysis and stability analysis of finite
element model are presented first. Table 1 shows the natural frequencies of the finite element component disc
Table 1

Natural frequencies of the transverse doublet modes of the finite element disc brake with free-free boundary condition (Hz)

n

2 3 4 5 6 7 8

976 2340 3863 5550 7362 9275 11 256

977 2341 3867 5552 7371 9282 11 276

Fig. 5. Mode shapes on squeal frequencies for finite element disc brake at m ¼ 0.4 and kc ¼ knom: (a) doublet mode pair (n ¼ 4),

(b) doublet mode pair (n ¼ 6), (c) doublet mode pair (n ¼ 7), and (d) nodal diameter mode (n ¼ 8) and adjacent mode.
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model, where some of doublet modes have the significant component frequency separation, for example, 9Hz
frequency separation for the 6th doublet mode. By solving for the eigensolutions of Eq. (46) and converting
the mode shapes corresponding to unstable modes, the unstable modes can be identified. Shown in Fig. 5 are
the mode shapes of unstable modes on squeal frequencies at m ¼ 0.4 and kc ¼ knom. Of the four mode shapes
presented in Fig. 5, the first three correspond to the transverse doublet modes leading to squeal. Therefore, the
dynamic instability of these doublet modes deserves attention in the linear brake squeal analysis.

Here the contact geometry of the analytical model is simplified as an annular sector shape having a contact
span angle, inner and outer radii as shown in Fig. 6 and system parameters are summarized in Table 2. The
corresponding modal data is obtained by solving the boundary value problem as detailed in Eq. (4) and
summarized in Table 3. For comparison between the results of our analytical model and the physical finite
ri

�c

ro

Y

X

Fig. 6. Contact geometry of physical pad lining; contact span angle (yc), inner radius (ri), and outer radius (ro).

Table 2

Nominal values of system parameters in the analytical disc model

Parameter Symbol Value

Outer radius of the disc b 150mm

Inner radius of the disc a 40mm

Outer radius of contact area ro 142mm

Inner radius of contact area ri 100mm

Thickness of the disc h 26mm

Contact angle yc 621

Young’s modulus E 88.9GPa

Density r 7150kg/m3

Poisson’s ratio n 0.285

Nominal contact stiffness knom 0.35� 1011N/m3

Table 3

Frequencies and modal constants for the annular plate subject to clamped boundary condition at inner radius and free boundary condition

at outer radius

n 1 2 3 4 5 6 7 8

fn 1153 1447 2553 4318 6589 9308 12 461 16 040

An 0.4440 1.0013 1.2512 1.4528 1.6428 1.8223 1.9925 2.1546

En 0.6749 0.2232 0.0482 0.0097 0.0018 0.0003 0.0001 0.0000

Bn 0.1326 0.1534 0.1041 0.0594 0.0332 0.0186 0.0105 0.0059

Fn 0.5245 0.1619 0.0358 0.0075 0.0015 0.0003 0.0000 0.0000

bn 16.1987 18.1476 24.1023 31.3456 38.7159 46.0215 53.2484 60.4116

An, En, Bn, Fn are normalized by modal masses.
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Fig. 7. Frequency loci with respect to contact stiffness variation on zero friction coefficient domain: (a) analytical multiple-mode model

for the annular plate, and (b) finite element model of a car disc brake leaving off any modes except transverse doublet modes.

J. Kang et al. / Journal of Sound and Vibration 316 (2008) 164–179 175
element disc model, the natural frequencies of the finite element disc model are brought into the analytical
model. To demonstrate the validation of analytical solution, the eigensensitivity analysis associated with the
variation of the contact stiffness is conducted. Fig. 7 illustrates that the stiffness-coupled frequency loci of the
FE and analytical model are well approximated. The modal stability boundaries obtained from two models
are also close as depicted in Fig. 8.

Another validation may be required for the analytical reduced-order model. The one-doublet mode model is
based on the assumption that the modal influence from modes other than the doublet pair is weak enough to
be neglected due to relatively large frequency separation, as opposed to the nearly zero frequency separation
between two sine/cosine modes in the doublet pair. Fig. 9 illustrates that the eigensolution of the one-doublet
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Fig. 8. Modal stability boundary of a single doublet mode pair solved by finite element model and analytical model; for n ¼ 4,

Df ¼ 4(3863/3867Hz): (a) finite element stability, (b) analytical stability; for n ¼ 6, Df ¼ 9(7362/7371Hz), (c) finite element stability, and

(d) analytical stability; dark region represents unstable region.

Fig. 9. Validation for the one-doublet mode model (n ¼ 5) at kc ¼ knom; (—): multiple-mode model (N ¼ 16), (– –): one-doublet mode

model.
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mode model is well approximated to that of the multiple-mode model in terms of a mode-merging point as
squeal onset.

The one-doublet mode model is now utilized to investigate mode-coupling squeal mechanism due to disc
doublet modes. In order to account for the component frequency separations of the doublet modes in the
physical finite element disc brake, the natural frequencies from the finite element modal analysis as shown in
Table 1 are used. The critical issue is that the minimum level of a critical friction coefficient can be determined
by the specific contact span angles as shown in Fig. 10. The results show that the contact span angle plays a
key role on the squeal propensity of transverse doublet modes. Fig. 11 provides the stability diagram for the
squeal propensity induced by a transverse doublet mode. The critical contact span angles for the doublet mode
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Fig. 10. Stability analysis with respect to the variation of contact span angle at kc ¼ knom; frequency loci of a doublet mode pair:

(a) n ¼ 4(3863/3867Hz), (b) n ¼ 6(7362/7371Hz), stability region: (c) n ¼ 4(3863/3867Hz), and (d) n ¼ 6(7362/7371Hz); dark region

represents unstable region.

Fig. 11. Stability diagram for n ¼ 6 with respect to nyc and nmcr; (—): zero frequency separation (7371/7371Hz), (– –): non-zero frequency

separation (7362/7371Hz); the minimal values of nmcr correspond to sin(nyc) ¼ 0 for a doublet mode with zero frequency separation.
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pairs with zero component frequency separation (o2n�1 ¼ o2n) are shown to be periodic values as opposed to
those of the doublet mode pairs with non-zero component frequency separation (o2n�1 6¼o2n).

From the disc doublet discrete model, the role of the contact span angle is also demonstrated. Fig. 12
illustrates that the ratio of contact stiffness, ky/kx in the disc doublet discrete model varies with respect to the



ARTICLE IN PRESS

Fig. 12. The ratio of contact stiffness in the disc doublet discrete model with respect to the variation of contact span angle: (a) n ¼ 3,

(b) n ¼ 8 contact stiffness separation becomes zero at sin(nyc) ¼ 0.
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variation of the physical contact span angle. As ky/kx approaches to unity, the squeal propensity increases.
Therefore, the critical contact span angles for the nth doublet mode model correspond to ky/kx ¼ 1 in this
figure.

In summary, corresponding to every transverse doublet mode is a critical contact span angles. Therefore,
the contact span angle should be the substantial design parameter for controlling mode-coupling type squeal
propensity in a car disc brake system. The squeal propensity can be decreased by designing the pad arc angle
to avoid the critical contact span angles as described in Eq. (31). It should be noted that the component
frequency separation of a doublet mode pair enforces to design the brake system more carefully since the
critical contact span angles become dependent of contact stiffness.

4. Conclusions and discussion

The squeal mechanism of a thin disc with finite contact area has been studied analytically. The analytical
model was validated by comparing its results with those of the finite element model of an actual disc brake
system. The validation allowed us to investigate the squeal mechanism of an actual disc brake system through
the use of the one-doublet mode model. The one-doublet mode model led to a closed-form solution which
is used to explain how the stiffness-coupled (or component) frequency separation in a doublet mode pair
influences on squeal propensity.

The closed-form solution and numerical calculation allowed the following conclusions to be drawn. First,
for zero component frequency separation in a doublet mode, the highest squeal propensity arises at the specific
contact span angles satisfying sin(nyc) ¼ 0. If the component frequency separation in a doublet mode is not
zero, the critical contact span angle will be the function of contact stiffness and the component frequency
separation. The critical contact span angles can be obtained from simple numerical calculation of Eq. (31), and
they are shown to be close values from the angles satisfying sin(nyc) ¼ 0.

Furthermore, the one-doublet mode model of a disc has been equivalently expressed as a two-degree-of-
freedom discrete model in the linear stability analysis. This simplified model is useful in explaining squeal
mechanism due to the doublet mode pair of a disc rotor. From this model, it was seen that the modal contact
strain energy is related to the propensity for modal instability, where the contact span angle is the influential
parameter on the contact strain energy. This physical interpretation has been consistent with the relationship
between mode-veering and modal instability previously mentioned in Refs. [9,10].
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